The Crystal Structure of $\mathrm{Mn}_{5} \mathrm{Si}_{2}$ and the \boldsymbol{D} Phase (V-Fe-Si)*

By Clara Brink Shoemaker and David P. Shoemaker
Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, U.S.A.

(Received 10 December 1975; accepted 27 January 1976)
The structure model derived earlier for the D phase, $\mathrm{V}_{26 \cdot 5} \mathrm{Fe}_{44} \mathrm{Si}_{29 \cdot 5}$, has been refined by full-matrix least squares with diffractometer data for the isotypic $\mathrm{Mn}_{5} \mathrm{Si}_{2} . \mathrm{Mn}_{5} \mathrm{Si}_{2}$ is tetragonal, $a=8.9097 \pm 2$, $c=8.7153 \pm 3 \AA, 56$ atoms per unit cell, space group $P 4_{1} 2_{1} 2$. The final $R(F)$ for the refinement with isotropic thermal parameters is 0.082 (all 640 independent reflections), or 0.053 (463 reflections with $I>2 \sigma)$. The structure belongs to the family of σ-phase related phases; it is 'tetrahedrally close packed' (t.c.p.), but it has four-coordinated bonds in addition to the five- and six-coordinated bonds found in 'ideal' t.c.p. structures. The structure does not possess non-tetrahedral interstices as does α - $\mathrm{Mn}(A 12)$, which possesses distorted octahedral interstices. Mn and Si appear to be ordered: of the 56 atoms in the unit cell, sixteen (29%) have CN $16(\mathrm{Mn}$), eight (14%) have CN 14 (Mn), sixteen (29%) have CN 12 (eight Mn , eight Si), eight (14%) have CN $13(\mathrm{Mn}$) and eight (14%) have CN 11 (Si). Unlike the v phase $\left(\mathrm{Mn}_{81.5} \mathrm{Si}_{18.5}\right)$, this structure possesses some $\mathrm{Si}-\mathrm{Si}$ bonds.

Introduction

A phase of composition $\mathrm{Mn}_{5} \mathrm{Si}_{2}$ was indexed on a tetragonal cell by Sénateur \& Fruchart (1964); this apparently is one of the 'low-temperature' $\left(\sim 600^{\circ} \mathrm{C}\right)$ phases mentioned by Åmark, Borén \& Westgren (1936). The D phase was discovered by Bardos \& Beck (1966) in the $\mathrm{V}-\mathrm{Fe}-\mathrm{Si}$ and the $\mathrm{V}-\mathrm{Mn}-\mathrm{Fe}-\mathrm{Si}$ systems and indexed on a similar tetragonal cell. Setz, Nowotny \& Benesovsky (1968) suggested that $\mathrm{Mn}_{5} \mathrm{Si}_{2}$ and the D phase are isotypic; this was confirmed by Shoemaker \& Shoemaker (1971c) by a careful comparison of the powder diffraction diagrams. A specimen of the D phase of composition $\mathrm{V}_{26.5} \mathrm{Fe}_{44} \mathrm{Si}_{29.5}$ was kindly made available to us by Professor Paul A. Beck, University of Illinois. Some years ago we derived a model for the structure, although the single crystals isolated were very small and badly twinned and only about 50 independent reflections were obtained on Weissenberg pictures taken with $\mathrm{Cr} K \alpha$ radiation (Shoemaker \& Shoemaker, 1965, 1966). We now report a refinement of this structure model with diffractometer data obtained from a single crystal isolated from a sample of $\mathrm{Mn}_{5} \mathrm{Si}_{2}$, kindly sent to us by Dr R. Fruchart, Institut National Polytechnique de Grenoble, France.

Experimental

The cell dimensions listed in Table 1 were determined by least squares from powder diffraction diagrams taken with $\mathrm{Fe} K \alpha_{1}$ radiation (Sénateur, Fruchart \& Shoemaker, 1975). Intensity data for a crystal fragment in arbitrary orientation were collected on a Syntex $P \overline{\mathrm{I}}$ diffractometer with Mo $K \alpha$ radiation and a graphite monochromator. A $\theta-2 \theta$ scan was used and

[^0]all reflections in one octant of reciprocal space out to $2 \theta=60^{\circ}$ were measured. The scan rate was 1 deg $\min ^{-1}$; the 2θ range was $1 \cdot 6^{\circ}$ plus the $\alpha_{1} \alpha_{2}$ angular separation. Background readings were made at the beginning and the end of each scan range; the background time/scan time was unity. A total of 1200 reflections were measured, of which 640 were independent. The crystal fragment was irregularly shaped with dimensions varying between 0.055 and 0.065 mm . An absorption correction was applied assuming spherical shape with $\mu r=0 \cdot 57$, corresponding to absorption factors ranging from $2 \cdot 23$ to $2 \cdot 18$. In a later stage of the refinement a secondary extinction correction factor of the form $F_{o}^{\text {corr }}=F_{o}\left(1+g I_{o}\right)$ (Zachariasen, 1963) was applied. The real part of the anomalous dispersion correction (Cromer, 1965) was included, and the imaginary part was used at the end of the refinement to distinguish between the two possible enantiomorphous space groups.

Table 1. Crystal data for $\mathrm{Mn}_{5} \mathrm{Si}_{2}$

$$
\begin{aligned}
& \text { F.W. } 330 \cdot 36 \\
& a=8 \cdot 9097 \pm 2 \AA \\
& c=8 \cdot 7153 \pm 3 \\
& V=691.84 \pm 5 \AA^{3} \\
& \lambda\left(\mathrm{Fe} K \alpha_{1}\right)=1 \cdot 93597 \AA \\
& \mu(\mathrm{Mo} K \alpha)=189.6 \mathrm{~cm}^{-1}
\end{aligned}
$$

Space group: $P_{1} 2_{1} 2^{2}\left(D_{4}^{4}\right)$
$Z=56$ atoms $/$ cell
$D_{m}=6.34 \pm 2 \mathrm{~g} \mathrm{~cm}^{-3}$
$D_{x}=6.343$
$F(000)=1240$

Structure model

The structure is tetragonal, Laue group $4 / \mathrm{mmm}$, with systematic extinctions: $h 00$ with h odd, $00 l$ with $l \neq 4 n$, corresponding to space group $P 4_{1} 2_{1}$ 2 and its enantiomorph $P 4_{3} 2_{1}$. The structure model for the D phase, $\mathrm{V}_{26.5} \mathrm{Fe}_{44} \mathrm{Si}_{29.5}$ (Shoemaker \& Shoemaker, 1965, 1966), was used; this model was derived from the resemblance of certain features of the diffraction pattern to those of the σ phase (Bergman \& Shoe-
maker, 1954). The cell dimensions of the D phase are very similar to those of the σ phase, except for a doubling of the c axis. Both structures are tetragonal and the number of atoms per unit cell in the D phase (56) is almost twice that for the σ phase (30). The $h k 0$ reciprocal layer of the D phase resembles that of the σ phase, indicating that σ-phase type layers (consisting of hexagons and triangles, with the hexagons in successive layers antisymmetrically superimposed in the σ phase itself) occur in the D phase perpendicular to the c axis. The cell dimensions of the D phase are quite similar to those for the δ phase (Shoemaker \& Shoemaker, 1963) and for both structures the number of atoms per unit cell is 56 . The δ phase is, however, only pseudo-tetragonal (its actual space group is $P 2_{1} 2_{1} 2_{1}$) and it contains puckered σ-phase type layers perpendicular to the a and b axes.

The three-dimensional Patterson function calculated for the D phase confirmed the presence of puckered σ-phase type layers perpendicular to the c axis but had in addition a very high peak at $0 \cdot 20,0, \frac{1}{2}$. This peak was interpreted to indicate that σ-phase layers $c / 2$ apart are shifted by $0 \cdot 20,0, \frac{1}{2}$. This arrangement was achieved by placing a σ-phase layer at $z \sim 0$, with the atom that is at the origin of the σ phase located at $x, y=0 \cdot 10,0$ with respect to a 4_{1} axis. The 2_{1} axes parallel to a are in the same positions as the 2_{1} axes between the layers in the σ phase. The 2_{1} axes parallel to b require a puckering of the layers. It appeared possible to pucker the layers by trial so that good coordinations were obtained for some of the atoms, and four atoms per unit cell were eliminated by fusion. This structure model was refined by least squares, but good agreement could not be obtained because of the very limited and imprecise data set (50 observed reflections out of a possible 150 with $\mathrm{Cr} K \alpha$ radiation).

Structure refinement

Data treatment

The trial structure was successfully refined with the data set obtained as described above for a crystal of $\mathrm{Mn}_{5} \mathrm{Si}_{2}$. The data reduction and the initial refinement cycles were done on Oregon State University's CDC 3300 computer with local versions of the programs STUDIT, INCOR (Zalkin), SUFLS (based on the Oak Ridge least-squares refinement program) and LSLONG (based on Zalkin's modification of the Gantzel-Sparks-Trueblood refinement program). The $h k l$ and $k h l$ data were averaged and the scattering factors for the neutral atoms were taken from International Tables for X-ray Crystallography (1962) and corrected for the real part of the anomalous dispersion (Cromer, 1965) with $f^{\prime}=0.36$ for Mn and 0.09 for Si . The weights were based on the standard errors in the averaged intensities I_{o} calculated with the equation $\sigma\left(I_{o}\right)=$ $0.786\left[C+B+(0.05 C)^{2}+(0.05 B)^{2}\right]^{1 / 2}$. (C is the count integrated over the diffraction maximum, B is the total
background count. The factor 0.786 is calculated by the program STUDIT to bring the σ 's into agreement, on the average, with those calculated from the scatter of the data; the factor 0.05 in the formula is evidently too large.) All reflections were used in the refinement; the reflections with intensities lower than the background were entered with a very small positive value; for such reflections we arbitrarily assumed $\sigma(F)=$ $\left[\sigma\left(F^{2}\right)\right]^{1 / 2}$. The final refinement cycles were performed on the Lawrence Berkeley Laboratory CDC 7600 computer from a remote terminal with the LESQ program contained in Zalkin's X-RAY 76 program system. In these cycles absorption, extinction and anomalous-dispersion corrections were applied.

Ordering of the atoms

In the original model we assumed that the positions with irregular coordinations, which later turned out to have CN 11 and 13, were occupied by Si and the positions with CN 12, 14 and 16 by Mn. Variation of the occupancies, while keeping the isotropic B parameters fixed at an average value, indicated that the CN 13 position was actually occupied by Mn and that the Si atoms occupied the position with CN 11 and one of the positions with CN 12 . This distribution was assumed in the final cycles and led to a reasonably limited spread in the thermal parameters. From this we conclude that Mn and Si in $\mathrm{Mn}_{5} \mathrm{Si}_{2}$ are fully ordered (apart from possible admixtures of less than $5 \mathrm{at} . \%$), in contrast to our findings for the v phase $\left(\mathrm{Mn}_{81.5} \mathrm{Si}_{18.5}\right.$, Shoemaker \& Shoemaker, 1971a), where some CN 12 positions are solely occupied by Mn or Si , but where other CN 12 positions contain various mixtures of Mn and Si .

Thermal and positional parameters

First attempts to vary the isotropic B parameters led to negative values for all atoms. Application of extinction and absorption corrections (see under Experimental) gave the final isotropic B values listed in Table 3 and agreement indices listed in Table 2. Two more cycles were run with anisotropic thermal parameters. Application of the significance test (Hamilton, 1965) to the R_{w} values (Table 2) shows that 'the hypothesis of isotropic motion can be rejected at the 0.005 level'. Analysis of the thermal ellipsoids shows, however, that for all atoms the mean square displacement along \mathbf{c} is about $\frac{2}{3}$ of the displacements along \mathbf{a} and \mathbf{b}, which do not differ significantly from each other. Atom $\mathrm{Si}(6)$ has a very small displacement in the \mathbf{c} direction. Therefore the anisotropic thermal parameters probably do not have physical meaning in terms of anisotropic thermal motion. Rather they may reflect the inadequacy of the spherical absorption correction; an ellipsoid may be a better approximation for the shape of the crystal. The positional parameters listed in Table 3 were obtained at the end of the refinement with anisotropic thermal parameters. They differ by less than σ from the values obtained at the end of the isotropic refine-
ment [except a difference of $1 \cdot 5 \sigma$ in the y parameter for Si(8)].*

Table 2. Agreements obtained in the least-squares refinements of $\mathrm{Mn}_{5} \mathrm{Si}_{2}$

$$
\begin{aligned}
& \Delta F=\left|\left|F_{o}\right|-\left|F_{c}\right|\right| \\
& R=\sum \Delta F / \sum\left|F_{o}\right|, R_{w}=\left\{\sum\left[w(\Delta F)^{2}\right] / \sum\left[w F_{o}^{2}\right]\right\}^{1 / 2} \\
& S=\left\{\Sigma\left[w(\Delta F)^{2}\right] /(N O-N V)\right\}^{1 / 2}
\end{aligned}
$$

	$N O$	$N V$	R	R_{w}	S
$h k l$ and $k h l$ averaged					
Isotropic	640	29	0.0823	0.0457	1.402
Isotropic, $I>2 \sigma$	463		0.0535		
Anisotropic	640	63	0.0766	0.0408	1.289
Non-averaged data					
x, y and 4_{1}, isotropic	1196	29	0.1074	0.0459	1.514
y, x and 43, isotropic	1196	29	0.1098	0.0477	1.572

Anomalous dispersion

The $h k l$ and $k h l$ data are related as Bijvoet pairs. All data in one octant were measured and in the refinements with the $h k l$ and $k h l$ data averaged only f^{\prime} was included in f. Two isotropic refinement cycles were run with intensities not averaged for $h k$ and $k h$ and with $f^{\prime \prime}$ included in the scattering factors. (The values used were 0.80 for Mn and 0.09 for Si ; Cromer, 1965.) In this refinement the 20 positional parameters changed from the values given by the isotropic refinement by amounts most of which were smaller than σ; one [again y for $\mathrm{Si}(8)$] changed by $2 \cdot 2 \sigma$. The enantiomorph is obtained by interchanging the x and y parameters of the atoms and replacing the 4_{1} screw axis by a 4_{3} screw axis. Two isotropic cycles were run for the enantiomorph and the agreement indices obtained are compared in Table 2. Although the difference is small, the significance test (Hamilton, 1965) shows that the model with the 4_{3} axis may be rejected for the particular crystal specimen used at the 0.005 significance level. The correctness of the 4_{1} enantiomorph was also indicated by structure-factor comparisons: for 22 hkl $k h l$ pairs with calculated structure-factor differences of the order of σ or larger, the observed structure-factor

[^1]differences were in sign agreement with the 4_{1} enantiomorph in 20 cases and with the 4_{3} enantiomorph in two.

Description of the structure

The σ-phase nets

Fig. 1 is a stereo view in the \mathbf{c} direction of part of the structure of $\mathrm{Mn}_{5} \mathrm{Si}_{2}$ produced by the computer program ORTEP (Johnson, 1965). Three puckered nets, related by the operation of 4_{1} axes [located between atoms $\mathrm{Mn}(7)]$ are shown and the atoms have been connected so as to make these nets resemble the planar nets occurring in the main layers of the σ phase. Atoms $\mathrm{Mn}(2)$ and $\mathrm{Mn}(3)$ correspond to the atoms in the subsidiary layers of the σ phase which center in projection the hexagons in the main layers. However, the nets in $\mathrm{Mn}_{5} \mathrm{Si}_{2}$ are so severely puckered that the distinction between main and subsidiary layers has largely lost its meaning and one can connect different sets of atoms to produce σ-phase type nets. The nets in $\mathrm{Mn}_{5} \mathrm{Si}_{2}$ do not stack in perfect σ-phase fashion. The atoms between the layers in the σ phase are at the centers of hexagonal antiprisms with two polar atoms, resulting in CN 14 coordinations. Atom $\mathrm{Mn}(2)$ in $\mathrm{Mn}_{5} \mathrm{Si}_{2}$ has CN 16 : the hexagon formed by atoms $\mathrm{Mn}(5), \mathrm{Mn}(7), \mathrm{Si}(6), \mathrm{Si}(6)$, $\mathrm{Mn}(7), \mathrm{Mn}(5)$ is almost planar, but the hexagon formed by atoms $\mathrm{Mn}(4), \mathrm{Si}(8), \mathrm{Mn}(7), \mathrm{Mn}(5), \mathrm{Mn}(1)$, $\mathrm{Si}(6)$ is somewhat puckered and at the other side of it are three atoms $[\mathrm{Mn}(1), \mathrm{Si}(8)$ and $\mathrm{Mn}(3)]$ neighboring atom $\mathrm{Mn}(2)$. Atom $\mathrm{Mn}(3)$ (on a diagonal twofold axis) is at the center of gravity of the surrounding puckered hexagon and thus could have been chosen as part of the main layer. Its CN is 14 , but the planar hexagons are approximately parallel to \mathbf{c} [each composed of atoms $\operatorname{Mn}(1), \operatorname{Si}(8), \mathrm{Mn}(2), \mathrm{Mn}(4), \mathrm{Mn}(5), \mathrm{Si}(6)$, with two other atoms $\mathrm{Mn}(1)$ as polar atoms]. Fig. 1 also shows the apparent shift of the σ-phase type layers separated by $c / 2$ over approximately $\Delta x=0 \cdot 20, \Delta y=0$ [the horizontal component of the vector between atoms $\mathrm{Mn}(7)$ on the two layers] which causes the high peak in the Patterson function used in the derivation of the structure.

The coordination polyhedra and interstices

$\mathrm{Mn}_{5} \mathrm{Si}_{2}$ and the D phase differ in some respects from the 'ideal' tetrahedrally close-packed (t.c.p.) structures (Shoemaker \& Shoemaker, 1971b): in addition to the

Table 3. Atomic parameters for $\mathrm{Mn}_{5} \mathrm{Si}_{2}$
Positional parameters are from anisotropic refinement; B values are from prior isotropic refinement.

CN	Atom	Site	x	y	z	$B\left(\AA^{2}\right)$
16	$\operatorname{Mn}(1)$	$8(b)$	0.42038 ± 27	0.18554 ± 28	0.32968 ± 23	0.634 ± 37
16	$\operatorname{Mn}(2)$	$8(b)$	0.17466 ± 29	0.22408 ± 28	0.15031 ± 25	0.831 ± 38
14	$\operatorname{Mn}(3)$	$4(a)$	0.13799 ± 28	0.13799	$\frac{1}{2}$	0.692 ± 56
14	$\operatorname{Mn}(4)$	$4(a)$	0.45162 ± 28	0.45162	0	0.718 ± 56
12	$\operatorname{Mn}(5)$	$8(b)$	0.36946 ± 26	0.45348 ± 26	0.21380 ± 25	0.484 ± 34
12	$\operatorname{Sin}(6)$	$8(b)$	0.46925 ± 52	0.26766 ± 49	0.04582 ± 45	0.480 ± 66
13	$\operatorname{Mn}(7)$	$8(b)$	0.39882 ± 26	0.01027 ± 27	0.07580 ± 23	0.673 ± 34
11	$\operatorname{Si}(8)$	$8(b)$	0.38473 ± 53	$0 \cdot 19232 \pm 52$	0.60242 ± 42	0.597 ± 65

'normal' coordination numbers of 12,14 and 16 , coordinations of 11 and 13 occur. The CN polyhedra, produced by the program ORTEP (Johnson, 1965), are shown in Figs. 2-5, in which Mn atoms are represented by large circles and Si atoms by small circles (although the distances indicate that Mn and Si with the same CN display approximately the same radius). Fig. 2 shows the CN 16 polyhedra for atoms $\mathrm{Mn}(1)$ and $\mathrm{Mn}(2)$. For both atoms the polyhedra are oriented with an approximate threefold axis in the vertical direction. Fig. 3 shows the CN 14 polyhedra for atoms $\mathrm{Mn}(3)$ and $\mathrm{Mn}(4)$. These atoms are on twofold axes, which in both figures are approximately horizontal. The approximate sixfold axes are vertical. Fig. 4 shows the CN 12 polyhedra for atoms $\mathrm{Mn}(5)$ and $\mathrm{Si}(6)$,
which are distorted icosahedra. In both cases there is an approximate fivefold axis in the vertical direction. The irregular coordinations are shown in Fig. 5: a CN 13 polyhedron for $\mathrm{Mn}(7)$ and a CN 11 polyhedron for $\mathrm{Si}(8)$. The CN 13 polyhedron may be considered as an intermediate between an icosahedron (CN12) and a CN 14 polyhedron: the bond between atom $\operatorname{Mn}(7)$ and atom $\mathrm{Mn}(2)$ at the bottom is sixfold, but the bond between atom $\mathrm{Mn}(7)$ and atom $\mathrm{Si}(6)$ at the top of the figure is fivefold. A similar coordination is found in α-Mn (Oberteuffer \& Ibers, 1970). The CN 11 polyhedron may be considered as a distorted icosahedron. The bonds between $\mathrm{Si}(8)$ and atom $\mathrm{Mn}(2)$ in front, and between $\mathrm{Si}(8)$ and $\mathrm{Mn}(3)$ at the back are both surrounded by pentagons, but these two pentagons share

Fig. 1. Stereoscopic view produced by $O R T E P$ of part of the structure of $\mathrm{Mn}_{5} \mathrm{Si}_{2}$ in the direction of the $-c$ axis. The origin is in the lower left-hand corner, a is horizontal, b vertical. The layers at $z \sim 0$, $\frac{1}{4}$ and $\frac{1}{2}$ are shown. These layers are related by the operations of 4_{1} axes, coincident with the axes of helices of bonded $\mathrm{Mn}(7)$ atoms. Here and in Fig. 7 Mn atoms are indicated by their assigned numbers and Si atoms are indicated by their assigned numbers preceded by S .

Fig. 2. CN 16 polyhedra of atoms $\mathrm{Mn}(1)$ (left) and $\mathrm{Mn}(2)$ (right) in $\mathrm{Mn}_{5} \mathrm{Si}_{2}$.
atom $\mathrm{Mn}(1)$ at the bottom of the figure. This type of coordination occurs also for Si in $\mathrm{Mn}_{5} \mathrm{Si}_{3}$ ($D 8_{8}$ type).

All bonds in t.c.p. structures in which all atoms have one of the 'normal' coordination polyhedra (CN 12, 14, 15 or 16) are five- or six-coordinated. The occurrence of the polyhedra CN 11 and CN 13 in $\mathrm{Mn}_{5} \mathrm{Si}_{2}$ results in the presence of some four-coordinated bonds. These are shown in Fig. 6. Although one might consider the interstices enclosed by the atoms in Fig. 6 as squashed octahedra, they are better described as four tetrahedra sharing a central edge $[\mathrm{Si}(8)-\mathrm{Si}(8)$ and $\mathrm{Si}(8)-$ $\mathrm{Mn}(7)$, respectively] since the lengths of the edges of these tetrahedra are within the limits for those found in the other t.c.p. structures (Shoemaker \& Shoemaker, 1969). The coordination polyhedra in $\mathrm{Mn}_{5} \mathrm{Si}_{2}$ are
completely interpenetrating (as defined by Brandon, Chieh, Pearson \& Riley, 1975). In this the D-phase structure differs from structures like the γ-brasses and $\alpha-$ and $\beta-\mathrm{Mn}$, which have also been described in terms of tetrahedral interstices, but with some arbitrariness or 'freedom' in the choice of tetrahedra in certain regions of those structures (Brandon et al., 1975).

Interatomic distances and major networks

The interatomic distances are given in Table 4. The range they cover is $2 \cdot 319-3 \cdot 364 \AA$, which is comparable with that in the v phase, $\mathrm{Mn}_{82} \mathrm{Si}_{18}$, namely $2 \cdot 211-3 \cdot 279$ \AA (Shoemaker \& Shoemaker, 1971a) and somewhat larger than that in $\alpha-\mathrm{Mn}$, namely $2.258-2.930 \AA$ (Oberteuffer \& Ibers, 1970). As in other t.c.p. structures,

Fig. 3. CN 14 polyhedra of atoms $\mathrm{Mn}(3)$ (left) and $\mathrm{Mn}(4)$ (right) in $\mathrm{Mn}_{5} \mathrm{Si}_{2}$.

Fig. 4. CN 12 polyhedra of atoms $\mathrm{Mn}(5)$ (left) and $\mathrm{Si}(6)$ (right) in $\mathrm{Mn}_{5} \mathrm{Si}_{2}$.
major bonds (those coordinated by six atoms) can be identified and are marked with asterisks in Table 4; four-coordinated bonds are marked with primes. In the ideal t.c.p. structures the major bonds form continuous networks in one, two or three dimensions. In $\mathrm{Mn}_{5} \mathrm{Si}_{2}$ the major bonds form two interlocking noninterconnected three-dimensional networks (Fig. 7). Unusual about these networks is that atom $\mathrm{Mn}(7)$ (CN 13) is connected in its network by two bonds enclosing an angle of 118° and that atom $\operatorname{Si}(8)(\mathrm{CN} 11)$ is connected to it by only one bond. This last bond, $\mathrm{Mn}(1)-\mathrm{Si}(8)$, has a distance of $2.399 \AA$, which is very short for a major bond to a CN 16 atom. However, in ideal t.c.p. structures the atoms in the major networks have $\mathrm{CN} \geq 14 ; \operatorname{Si}(8)$, with only CN 11 , may be expected to display a smaller radius.

The distortion of the major network is also demonstrated by the major-bond 'tetrahedral angles' at the CN 16 atoms, which vary between 106.0 and $117 \cdot 4^{\circ}$,
except that the angle CN13-CN16-CN11 is only 93.9°. The angles between the major bonds to the CN 14 atoms, $\mathrm{Mn}(3)$ and $\mathrm{Mn}(4)$, are $168 \cdot 5$ and $167 \cdot 2^{\circ}$, respectively (ideally 180°).

The silicon atoms

It has been shown that the stability ranges of t.c.p. structures can in certain cases be extended by the addition of silicon. Bardos, Malik, Spiegel \& Beck (1966) and Kuzma \& Hladyshevskii (1964) have found that in the $\mathrm{Mn}-\mathrm{Si}$ system at $1000^{\circ} \mathrm{C} \beta$-Mn dissolves up to $14 \mathrm{at} . \% \mathrm{Si}$ and at $600^{\circ} \mathrm{C} \alpha-\mathrm{Mn}$ also dissolves $14 \mathrm{at} . \%$. The structures of α - and $\beta-\mathrm{Mn}$ are not t.c.p. but contain many tetrahedral interstices.

With increasing Si in the $\mathrm{Mn}-\mathrm{Si}$ system two t.c.p. structures appear: at 14.3 at. $\% \mathrm{Si}$ an R phase $\left(\mathrm{Mn}_{6} \mathrm{Si}\right)$ and at $18 \mathrm{at} . \% \mathrm{Si}$ the v or N phase $\left(\mathrm{Mn}_{81.5} \mathrm{Si}_{18 \cdot 5}\right)$. The ordering of the atoms has not been investigated in this R phase; in the v phase we found (Shoemaker \&

Fig. 5. CN 13 polyhedron of atom $\mathrm{Mn}(7)$ (left) and CN 11 polyhedron of atom $\mathrm{Si}(8)$ (right) in $\mathrm{Mn}_{5} \mathrm{Si}_{2}$.

Fig. 6. The four-coordinated bonds in $\mathrm{Mn}_{5} \mathrm{Si}_{2}$. (a) $\mathrm{Si}(8)-\mathrm{Si}(8) ;(b) \mathrm{Si}(8)-\mathrm{Mn}(7)$. Heavy lines indicate major (six-coordinated) bonds.

Shoemaker, 1971a) that essentially all positions with $\mathrm{CN}>12$ are occupied by Mn and that the CN 12 positions are occupied by mixtures of Mn and Si atoms, except three positions which are occupied by Mn only and two positions which are occupied by Si only. The latter positions have only Mn atoms in their first coordination shells; this was taken as an indication that some charge transfer may occur from Mn to Si . We now find that in $\mathrm{Mn}_{5} \mathrm{Si}_{2}$, which contains more
silicon and is not 'ideally' t.c.p., some $\mathrm{Si}-\mathrm{Si}$ contacts do occur, namely a $\mathrm{Si}(6)-\mathrm{Si}(6)$ distance of 2.663 and a $\mathrm{Si}(8)-\mathrm{Si}(8)$ distance of $3.011 \AA$.

The structure of $\beta-\mathrm{Mn}$ is stabilized by C atoms and so is the structure of $\mathrm{Mn}_{5} \mathrm{Si}_{3}\left(\mathrm{Mn}_{62} \mathrm{Si}_{38}, D 8_{8}\right.$ type). Both structures contain octahedral interstices surrounded by Mn atoms; these interstices are the sites for the C atoms. On the other hand, Sénateur, Spinat \& Fruchart (1965) have found that $\mathrm{Mn}_{5} \mathrm{Si}_{2}$ does not dissolve C

Table 4. Interatomic distances for $\mathrm{Mn}_{5} \mathrm{Si}_{2}(\AA)$
The standard deviations are estimated to range between 0.004 and $0.008 \AA$. Distances occurring twice when reading down are underlined. Asterisks indicate major bonds; primes indicate four-coordinated bonds.

$\mathrm{Mn}(1)$	$\begin{gathered} \mathrm{CN} \\ 16 \end{gathered}$	$\begin{gathered} \mathrm{Mn}(1) \\ 16 \end{gathered}$	$\begin{gathered} \mathrm{Mn}(2) \\ 16 \end{gathered}$	$\underset{14}{\mathrm{Mn}(3)}$	$\begin{gathered} \mathrm{Mn}(4) \\ 14 \end{gathered}$	$\begin{gathered} \mathrm{Mn}(5) \end{gathered}$	$\begin{array}{r} \mathrm{Si}(6) \\ 12 \end{array}$	$\begin{gathered} \mathrm{Mn}(7) \\ 13 \end{gathered}$	$\mathrm{Si}(8)$
		3.350	2.712*	2.591*	$2 \cdot 811$	$2 \cdot 632$	2.571	2.628*	2.399*
			3.364	$\underline{2.952}$			$2 \cdot 616$	2.715	2.510
								3.200	2.762
$\mathrm{Mn}(2)$	16	2.712*	2.693*	$3 \cdot 160$	2•675*	$2 \cdot 637$	$2 \cdot 651$	2.641*	$2 \cdot 592$
		3.364				$\begin{aligned} & 2.687 \\ & 2 \cdot 738 \end{aligned}$	$\begin{aligned} & 2.805 \\ & 2.895 \end{aligned}$	$\begin{aligned} & 2.835 \\ & 2.907 \end{aligned}$	$2 \cdot 689$
$\mathrm{Mn}(3)$	14	2.591*	$3 \cdot 160$		$2 \cdot 853$	2.547	2.477		$2 \cdot 422$
		2.952							
$\mathrm{Mn}(4)$	14	2.811	2.675*	$2 \cdot 853$		2.594	$2 \cdot 629$		$2 \cdot 547$
						2.600			
$\mathrm{Mn}(5)$	12	$2 \cdot 632$	$2 \cdot 637$	2.547	2.594	$2 \cdot 319$	2.382	2•468	$2 \cdot 331$
			$2 \cdot 687$		2.600		$2 \cdot 442$		
			2.738						
Si(6)	12	2.571	$2 \cdot 651$	$2 \cdot 477$	$2 \cdot 629$	2.382	$2 \cdot 663$	2.392	
		$2 \cdot 616$	$\begin{aligned} & 2.805 \\ & 2.895 \end{aligned}$			$2 \cdot 442$		2-452	
Mn (7)	13	2.628*	2.641*			$2 \cdot 468$	2.392	$2 \cdot 528$	2.388
		$\begin{aligned} & 2.715 \\ & 3.200 \end{aligned}$	$\begin{aligned} & 2.835 \\ & 2.907 \end{aligned}$				$2 \cdot 452$		$2 \cdot 652^{\prime}$
Si(8)	11	2.399*	2.592	$2 \cdot 422$	$2 \cdot 547$	$2 \cdot 331$		2.388	3.011 ${ }^{\prime}$
		$\begin{aligned} & 2 \cdot 510 \\ & 2.762 \end{aligned}$	$2 \cdot 689$					2.652'	

Fig. 7. Stereoscopic view produced by $O R T E P$ of the two interpenetrating 'major networks' of six-coordinated bonds in $\mathbf{M n}_{5} \mathrm{Si}_{2}$ in the direction of the $-c$ axis.
atoms. Carbon-containing phases have been identified in the $\mathrm{Mn}-\mathrm{Si}$ systems at approximate compositions $\mathrm{Mn}_{5} \mathrm{SiC}$ and $\mathrm{Mn}_{4} \mathrm{SiC}$ and their structures have been determined (Spinat, Fruchart, Kabbani \& Herpin, 1970; Spinat, Brouty, Wheeler \& Herpin, 1975). They are somewhat related to the t.c.p. structures, but they contain trigonal prisms of Mn atoms in which carbon atoms are located.

We express our appreciation to Professor Paul A. Beck of the University of Illinois for providing the D phase samples and to Dr R. Fruchart of the Institut National Polytechnique de Grenoble for providing the sample of $\mathrm{Mn}_{5} \mathrm{Si}_{2}$. We thank Drs L. Feinstein, J. G. Keil and P. C. Manor, for experimental assistance while they were graduate students at M.I.T. and Dr T. E. Hopkins of Oregon State University for assistance with the experimental and computational work. We wish to thank Dr A. Zalkin of the Lawrence Berkeley Laboratory for making available his system of programs on the CDC 7600 computer. We are grateful to the Army Research Office (Durham) and the National Science Foundation for financial support.

References

Åmark, K., Borén, B. \& Westgren, A. (1936). Metallwirtschaft, 15, 835-836.
Bardos, D. I. \& Beck, P. A. (1966). Trans. AIME, 236, 64-69.
Bardos, D. I., Malik, R. K., Spiegel, F. X. \& Beck, P. A. (1966). Trans. AIME, 236, 40-48.

Bergman, G. \& Shoemaker, D. P. (1954). Acta Cryst. 7, 857-865.
Brandon, J. K., Chieh, P. C., Pearson, W. B. \& Riley, P. W. (1975). Acta Cryst. A31, 236-240.

Cromer, D. T. (1965). Acta Cryst. 18, 17-23.

Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Johnson, C. K. (1965). ORTEP. Oak Ridge National Laboratory Report ORNL-3794.
Kuzma, Y. B. \& Hladyshevskil, E. I. (1964). Russ. J. Inorg. Chem. 9, 373-377.
Oberteuffer, J. A. \& Ibers, J. A. (1970). Acta Cryst. B26, 1499-1504.
Sénateur, J. P. \& Fruchart, R. (1964). C. R. Acad. Sci. Paris, 258, 1524-1525.
Sénateur, J. P., Fruchart, R. \& Shoemaker, C. B. (1975). J. Appl. Cryst. 8, 70-73.

Sénateur, J. P., Spinat, P. \& Fruchart, R. (1965). Propriétés thermodynam. phys. struct. dérivés semi-métal. Coll. intern. Orsay, Paris, Centre Nat. Rech. Sci., pp. 127-134.
Setz, S., Nowotny, H. \& Benesovsky, F. (1968). Mh. Chem. 99, 2004-2015.
Shoemaker, C. B. \& Shoemaker, D. P. (1963). Acta Cryst. 16, 997-1009.
Shoemaker, C. B. \& Shoemaker, D. P. (1965). Abstract M7, Amer. Cryst. Assoc. Summer Meeting, Gatlinburg, Tennessee.
Shoemaker, C. B. \& Shoemaker, D. P. (1966). Acta Cryst. 21, A87-A88.
Shoemaker, C. B. \& Shoemaker, D. P. (1969). Developments in the Structural Chemistry of Alloy Phases. Edited by B. C. Giessen, pp. 107-139. New York: Plenum.
Shoemaker, C. B. \& Shoemaker, D. P. (1971a). Acta Cryst. B27, 227-235.
Shoemaker, C. B. \& Shoemaker, D. P. (1971b). Mh. Chem. 102, 1643-1666.
Shoemaker, C. B. \& Shoemaker, D. P. (1971c). Metall. Trans. 2, 2296-2299.
Spinat, P., Brouty, C., Wheeler, A. \& Herpin, P. (1975). Acta Cryst. B31, 541-547.
Spinat, P., Fruchart, R., Kabban, M. \& Herpin, P. (1970). Bull. Soc. Fr. Minér. Crist. 93, 171-184.

Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

[^0]: * Research supported by grants from the Army Research Office (Durham) and the National Science Foundation.

[^1]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31696 (4 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1 NZ , England.

